F. Maloberti

Layout of Analog CMOS Integrated Circuit

Part 2

Transistors and Basic Cells Layout

Outline

- Introduction
- Process and Overview Topics
- Transistors and Basic Cells Layout
- Passive components: Resistors, Capacitors
- System level Mixed-signal Layout

Part II: Transistor and Basic Cell Layout

- Transistors and Matched Transistors
 - Layout of a single transistor
 - Use of multiple fingers
 - Interdigitated devices
 - Common Centroid
 - Dummy devices on ends
 - Matched interconnect (metal, vias, contacts)
 - Surrounded by guard ring
- Design for Layout
 - ★ Stacked layout of analog cells
 - ★ Stick diagram of analog cells
 - **★** Example 1: two stages op-amp
 - **★** Example 2: folded cascode

Single Transistor Layout

- A CMOS transistor is the crossing of two rectangles, polysilicon and active area
- but, ... we need the drain and source connections and we need to bias the substrate or the well

F. Maloberti - Layout of Analog CMOS IC

Source and Drain Connections

Ensure good connections

Multiple contacts or one big contact?

Multiple or single contacts?

Curvature in the metal layer can lead to micro-fractures

Not important for large areas

Reliability problems, possible electro-migration

Multiple contacts: Exercise

- Consider the following design rules:
 - * minimum contact 0.5 μ
 - * spacing contact-contact 0.4 μ
 - * minimum grid strep 0.1 μ
 - * spacing contact diffusion 0.6 μ
- Estimate the number of contacts and their spacing for
 - **★** W=50 μ
 - **★** W=52 μ
 - **★** W=60 μ

Matching single Transistors

- Regular (rectangular shape)
 - * the W and L matter!!

- Parallel elements
 - ★ silicon is unisotropic
- Possibly, the current flowing in the same direction

Asymmetry due to Fabrication

An MOS transistor is not a symmetrical device. To avoid channeling of implanted ions the wafer is tilted by about 7° .

Source and drain are not equivalent

Parasitics in Transistors

Analog transistors often have a large W/L ratio

Capacitance diffusion substrate

$$C_{SB} = C_{DB} = (W + 2l_{diff})(L_D + 2l_{diff})$$

Resistance of the poly gate

$$R_{gate} = L_{gate} R_{sq,poly}$$

Use of multiple fingers

Parasitic in Transistors: Exercise

- Calculate the parasitic capacitance diffusionsubstrate for a 40 micron width transistor
 - ★ one finger
 - **★** 5 finger
 - **★** 8 finger
 - ★ Use the design rules available and minimum diffusion length

Interdigitated Devices

- Two matched transistors with one node in common
 - * spilt them in an equal part of fingers (for example 4)
 - ★ interdigitate the 8 elements: AABBAABB or ABBAABBA

Axis of Symmetries

Interdigitiation Patterns

А	AA	AAA	AAAA
AB*	ABBA	ABBAAB*	ABABBABA
ABC*	ABCCBA	ABCBACBCA*	ABCABCCBACBA
ABCD*	ABCDDCBA	ABCBCADBCDA*	ABCDDCBAABCDDCBA
ABA	ABAABA	ABAABAABA	ABAABAABA
ABABA	ABABAABABA	ABABAABABAABABA	ABABAABABAABABABA
AABA*	AABAABAA	AABAAABAAABA*	AABAABAAABAABAA
AABAA	AABAAAABAA	AABAAAABAAAABAA	AABAAAABAAABAA

Note: not all the patterns permit a stacked layout

Interdigitated Transistors: Exercises

- ❖ Sketch the layout of two interdigitated transistors having W₁=3W₂ and split W₂ into 4 fingers. M₁ and M₂ have their source in common.
- Sketch the layout of three interdigitized transistors having the same width. Use the optimum number of fingers. The three transistors have the source in common.

Common Centroid

- Gradients in features are compensated for (at first approximation)
 - * metal and poly interconnections are more complex
- F. Maloberti Layout of Analog CMOS IC

Common Centroid Arrays

Cross coupling

Tiling (more sensitive to high-order gradients)

Common Centroid Patterns

ABBA BAAB	ABBAABBA BAABBAAB	ABBAABBA BAABBAAB ABBAABBA	ABBAABBA BAABBAAB BAABBAAB ABBAABBA
ABA BAB	ABAABA BABBAB	ABAABA BABBAB ABAABA	ABAABAABA BABBABBAB BABBABBAB ABAABAABA
ABCCBA CBAABC	ABCCBAABC CBAABCCBA	ABCCBAABC CBAABCCBA ABCCBAABC	ABCCBAABC CBAABCCBA CBAABCCBA ABCCBAABC
AAB BAA	AABBAA BAAAAB	AABBAA BAAAAB AABBAA	AABBAA BAAAAB BAAAAB AABBAA

Dummy Devices on Ends

Ending elements have different boundary conditions than the inner elements -> use dummy

- Dummies are shorted transistors
 - * Remember their parasitic contribution!

Matched interconnections

- Specific resistance of metal lines
- Specific resistance of poly
- Resistance of metal-contact
- Resistance of via

$$\Delta V = Z_{\rm int} I$$

- Minimize the interconnection impedance
- Achieve the same impedance in differential paths
- Keep short the width of fingers for high speed applications

Matched Metal Connection

Waffle Transistor

Minimum capacitance drain-substrate and source-substrate

W not accurate L not well defined

To be used in wide transistors whose aspect ratio is not relevant

Part II: Transistor and Basic Cell Layout

- Transistors and Matched Transistors
 - **★** Layout of a single transistor
 - **★** Use of multiple fingers
 - ★ Interdigitated devices
 - * Common Centroid
 - **★** Dummy devices on ends
 - **★** Matched interconnect (metal, vias, contacts)
 - ★ Surrounded by guard ring
- Design for Layout
 - Stacked layout of analog cells
 - Stick diagram of analog cells
 - ★ Example 1: two stages op-amp
 - Example 2: folded cascode

Stacked Layout

- Systematic use of stack or transistors (multi-finger arrangement)
- Same width of the fingers in the same stack, possibly different length
- Design procedure
 - * Examine the size of transistors in the cell
 - ★ Split transistors size in a number of layout oriented fingers
 - ★ Identify the transistors that can be placed on the same stack
 - ★ Possibly change the size of non-critical transistors
 - ★ Use (almost) the same number of finger per stack
 - place stacks and interconnect

Stick Representation (one transistor)

Multi-transistor Stick Diagram

Example 1 (2 stages OTA)

Assume to layout a two stages OTA

Width only are shown; Compensation network and bias are missing (!)

Layout Oriented Design

F. Maloberti - Layout of Analog CMOS IC

Only width matters

Possible stacks: 1 p-channel, 2 n-channel

change the size of M6 and M7 to 80 and 120 respectively

Width of each finger?
We want the same number of fingers per stack (k).

$$W_{p1} = 180/k$$

$$W_{n1} = 120/k$$

$$W_{n2} = 120/k$$

for M3 and M4 use 2 fingers

Stack Design and Interconnections

Use of one Metal Layer

F. Maloberti - Layout of Analog CMOS IC

Stick Layout: Exercise

Draw the stick diagram of the two stages OTA in the following three cases:

- fingers of M6 and M7 all together
- M6 =90 M7=60
- M1 and M2 in a common centroid arrangement

From Stick to Layout

Example 2 (Folded Cascode)

F. Maloberti - Layout of Analog CMOS IC

Split of Transistors

F. Maloberti - Layout of Analog CMOS IC

Stack Design

X=11; o=10

Interconnection: Exercise

Sketch the source-drain interconnections of the folded-cascode

Basic Cell Design: check-list

- Draw a well readable transistor diagram
- Identify critical elements and nodes
 - Absolute and relative accuracy
 - Minimum parasitic capacitance
 - * Minimum interference
- Mark transistors that must match
- Mark symmetry axes
- Analyze transistor sizing (W's)
- Possibly, change transistor size for a layout oriented strategy
- Group transistors in stacks

- Define the expected height (or width) of the cell
- Sketch the stick diagram
 - transistors of the same type in the same region
- Foresee room for substrate and well biasing
 - * substrate bias around the cell
 - ★ well-bias surrounding the well
- Define the connection layer for input-output (horizontal, vertical connections)
- Begin the layout now!!